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CHAPTER 1

INTRODUCTION

With the increasing use of electronic computers, random sampling

methods have become a very useful tool for providing solutions to prob-

'lems involving probability as well as for problems of a deterministic

nature. The availability of sequences of numbers which appear to be

drawn at random from particular probability distributions is a vital

ingredient in the random sampling process. Such numbers are referred

to as pseudo-random numbers or, for convenience, simply as random num-

bers. This paper is concerned with the rapid and accurate generation

of such numbers in a stored computer program.

The use of random sampling to estimate distribution functions origi-

nated with Student [17] in 1908. At that time and for some time to

follow, necessary random numbers were obtained by drawing cards from a deck,

counters from an urn, or by rolling dice. Such processes are very

slow and make it quite difficult to insure randomness.

To facilitate the use of random numbers large tables of random digits

were compiled. The first such table, published by Tippett [19] in 1927,

consisted of 41,600 digits taken at random from census reports and com-

bined into 10,400 four digit numbers. The requirement for a larger set

of numbers led to the publication of 100,000 random digits in 1939 by

Kendall and Babington-Smith [7]. These digits were generated by means of
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a mechanical process and were the first to be so produced. Kendall and

Babington-Smith are also responsible for developing many of the tests

frequently applied to sequences of random numbers (5,6). Other such

tables have since been constructed, primarily by the use of physical

devices, culminating in the most extensive, "A Million Random Digits

with 100,000 Normal Deviates" published ty.the RAND Corporation [15] in

1955.

The use of a physical device for the generation of random numbers

on line with a computer is both expensive and difficult to maintain. The

storing of a table of random numbers on magnetic tape or on cards is also

an unsatisfactory method of generating numbers for use in a computer.

This would necessitate the use of an input device; also the time required

to read in the numbers would be excessive.

The development of arithmetic procedures for the generation of ran-

dom numbers began in the 1940's with the introduction of computers. The

first such procedure was suggested by von Neumann and Metropolis in 1946

and is described in [4]. It was also during this time that calculations

involving random numbers received the picturesque name "Monte Carlo." The

"middle-square" method proposed by von Neumann and Metropolis is simple,

fast, and requires only an initial starting value. In this procedure each

new number is produced by taking the middle n digits of the square of the

previous n-digit number. As pointed out in [4] and in [16] the sequence

of numbers produced using this method sooner or later degenerates to a cy-

cle which often is very small, and at worst consists of only a single num-

ber. In addition some of thb statistical tests performed on samples gen-

erated by the middle-square procedure have resulted in failures.

Improvements on the von Neumann method are plagued by similar difficulties
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(2] and [20].

Of the various arithmetic procedures sequences of random numbers

with the best statistical properties and longest periods are generated

- by means of the congruence relation

x = a x + c *(mod m). (1.1)

The representation (1.1) is termed the mixed congruential method. The

multiplicative congruential method is defined by taking c = 0 in (1.1)

Lehmer [8] is credited with the invention of the multiplicative method.

In their very informativ' survey Hull and Dobell [33 prescribe conditions

for a, m, c, and x 0 which insure maximum period. Other procedures for

the genration of random numbers based upon reduced Fibonacci series [21]

and upon transcendental numbers [3] are inferior to those based on the

congruence relation (!.1) (See [4]). In [9] lMacLaren and Marsaglia

present a table look-up scheme which seems t9 offer some promise.

Random numbers generated by arithmetic procedures are not."truly

random" in that the entire sequence is determined in advance and can

be reproduced simply by using the same starting value, x 0 . The

statistical behavior of sequences generated by both the mixed and

S fnultiplicativc congruential methods is quite good, and, in fact,

numbers genrated in this fashion do appear to be drawn at random from

the uniform (0,1) distribution

f(u) = 1, 0<u<l. (1.2)

The reproducibility of sequences is an advantage in debugging and in

certain calculations it may be desirable to reproduce a given sequence.
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Bargmann [1] has provided a procedure for the generation of indepen-

dent uniform (0,1) random numbers on a binary computer. This proce-

dure, which is a form of the multiplicative congruential method, is defin-

ed by

Un+ 1 = a u n(mod 232) (1.3)

where a is chosen such that a + 1 and a - I end in as few zero bits as

possible. This is insured by requiring that neither a - 1 nor a + 1 be

divisible by 2k for k = 3,4,.... Choosing a as an odd power of 5

determiines that the low order 3 digits will be 125, and neither 124 nor

126 is divisible by 2k for k = 3,4,.... Hence, a = 513 is a reasonable

choice. This procedure r--i,,es that u 0 , the starting value, be an

odd positive integer.

The use of this procedure results in a-very fast computer program

requiring only 3 operations: load, multiply, and store. A description

of the usage of this program along with time and storage requirements

is given in Chapter 6 of this paper. Results of statistical tests

performed on this procedure are presented in Chapter 5, and a listing

of the program is given in Appendix A.

The preceding discussion has dealt only with the.generation of

random numbers which appear to be uniformly distributed. In principle

it should be very easy to obtain any other distribution from the uni-

form distribution, requiring only a solution to the equation

u F(y) (1.4)

for y, where u is uniformly distributed on the interval (0,1) and P is the
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required cumulative distribution function. When the inverse of F is

known, as for the exponential distribution, this is a simple matter:

y =-In(u). (1.5)

However, the evaluation of the in function may be somewhat time consuming.

An alternative approach might be to store a value of y for each possible

value of u based on the relation

y = F- 1 (u). (1.6)

To generate y, simply generate a uniform (0,1) random number u which will

determine the location of a stored value of y. Let u be given to 8

digits and let 3 be the base of the number system in which the digits

are represented, then for this procedure a total of ý 8 .storage locations

are required.

Various approximations have been proposed for the normal distribu-

tion. Most of these involve taking the sum of a fixed number of uniform

(0,1) deviates or tie use of Chebyshev approximations [14] or a combi-

nation of the two [18]. Such approximations frequently lack accuracy

and are either slow or space consuming.

.The procedures suggested by Marsaglia et al. in [11],[12], and [13]

for transforming uniform (0,1) random numbers to random numbers

havinig other distributions are superior to any encountered. They are

fast, require minimal space, and are simple to program. In addition

these procedures are completely accurate: the precision of the result

is dependent only onl the word size of the computer. These procedures

along with programs and results of statistical tests arc presented in

detail in this paper.



CIPLPTER 2

GENEfRATIONJ OF DISCRI:TE RANDOM VARIABLLS

IN A COMPUTER

Let Y be a discrete random variable with point probabilities

pil Pr(Y yi) for i ; 1,2,.... The direct way to generate Y in a

computer is to generate a uniform (0,1) random number u and put Y y y.

if pi + p2 + + Pi-I < U < P, + P2 + .. + pi. However, techniques

based on this method lead to complicated programs that are excessively

time consuming.

An alternative mcthod proposed by- Marsaglia [11] is simple to

program and requires minimal time and storage. Let p, for i 1,2,...,

n be expressed by k digits as pi = "61i62 i "'" 6ki" If the domain of

the random variable is infinite, the probability distribution must be

truncated :?t some pn" Yhe fastest method for generating Y is as follows.

Let B be the base of the number system in which the 6 .'s are repre-

sented. In memory locations 0 to (Sk-1) store 611621631 ..- 6 k1 Y 1 's,

612(22 4 6k2 Y2 's, 6 10n2n - Skn Yn's" If u is a uniform (0,1)

random number, u .dld 2 ... dk, look up the number in location dld 2 .. d.

and let that be Y.

Though this may be the fastest method, it clearly requires an exes-

sive aniount of storage space. Even if the pi's are truncated to four

digits, 6" memory locations will be required.
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Marsaglia [11) suggests a technique that offers a considerable re-

duction in storage space with very little sacrifice in execution time.

For convenience assume that the pi's are truncated to four digits. We

have the following sitaation:

Value of Y Probability

6 66 6Y2 "12 22 32 42

Yn 6 I~5 n 62n 6 3n n

Define
n

PC 0, P =-r z6. (2.0.1)r ri=

for r 1,2,3,4, and

S n
R s Ej= 6. (2.0.2)

for s 1,2,3,4 and no 0. Segment memory locations 0 to (R4-1)

into four mutually exclusive sets such that set 1 consists of locations

0 to (ui-l), set 2 comprises locations ;i, to (n~-1), and in general

ththe s set occupies memory locations R_ to (ia -1) for s = 1,2,3,4.

In each set s for s = 1,2,3,4 each y, is stored in 6., locations for

1,2, ... , n, a total of IDs - ns-1 locations. The total racmor)y rc-
4 n

quirement is then n4 S.. locations. Now choose set I with
j=l i-l B

probabilitY P1 , set 2 with probability pF, sez 3 with probabi ility P3 , or
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set 4 with probability P,. Having chosen a set, select at random a loca-

tion within that set; the numbeCr occupying that location is the desired

random variable.

This procedure gives the required discrete distribution, as can be

seen by defining;

n
qri = ri/ z 6ii=l r

for i = 1,2, ... , n and r = 1,2,3,4. Thus qri is simply the probability

of choosing y1 from set r. Then the probability of generating Y y1 is

4 4
E l r ri .ii62i63i64i

r=1 r=l

which is the probability P(y = yi).

In order to select the proper set ,and location within that set,

generate a uniform (0,I) random variable u = ,d d2... and let A(j}

denote the contents of memory location j. Then if

s-i s
E P <u< E P

r=O r r=O r

put

s-i
Y A{d1 d 2  d + Rs-i - Pr

r=O

The following example illustrates this procedure. The hexadecimal

(8=16) nu:ber system is used as it is the representation of the IBM

360/6S,



Yi Pi

1 0 0. AOOO

2 0.1300

3 2 0. 14A2

4 3 O. O50

S 4 0.0202

6 5 0.020C

Defining Pr and ii as beforc gives

PC 0

6

6
P2 = 16I2 ES . = 0.Fi=12 '

6
P3 = 16-3 z6 3 = 0.00F

i=]1

and

F3 = 0

j i6fl = £ E 6.. =E
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2 6
E E 6.. 2DSj= l i = l i -i 1 1-

3 6
flI•Z= S . 3C

j=l i=i

4 6
Rt4  E S .. 4C.

jTl ifr o l

i The four sets are stored as follows:



A -. TABLY

SET 1 SET 2 SET 3 J E" f

Loc. jCon. Loc. Con. Loc. con,. Loc. Cori. Loc. Con.

0 0 1 IF 3 2D 2 3C 2

1 0 F I IF 3 2E 2 3D 2

2 0 10 1 20 3 2P 2 3f. 4

3 0 11 1 21 3 30 2 SF 4

4 0 12 1 22 3 31 2 40 5

5 0 13 1 23 3 32 2 41 &

6 0 14 1 24 3 33 2 42 5

7 0 )5 1 25 3 34 2 43 5

8 0 16 2 26 3 35 2 44 5

9 O 17 2 27. 3 36 2 45 5

A 1 18 2 28 3 37 3 46 5

4B 1 19 2 29 4 38 3 .47 5

C 1 IA 3 2A 4 39 3 48 5

D 2 1B 3 21B 5 3A 3 49 5

IC 3 2C 5' 3B, 3 4A 5

I D 3 4 B 51

TABLE- 21
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To generate the desired random variable, let U = .d 1d 2 ... be a
uniform (0,1) random number and let A(j) denote the contents of memory

location j and proceed as fol lows:

1) If 0 < u < 0.E put Y = AMd 2 }

2) If O.EO < u < .0.FF put Y = Afdld 2 - D!)

* 3) If 0.FFO < u < 0.FFF put Y = A{djd 2 d 3 - FC3)

4) If 0.FFFO < u put Y = A{djd 2 d 3d4 - FFB4}.

Examples:

u = 0.2170 Y = A{2} = 0

u = 0.EFIO .. Y = A{EF-D2J = ADD) 3

u = 0.FFFE ... Y = A(FFFE - FFB4) A{4A} =.S.

In this example 4C( 1 6 ) memory locations are required as compared to
164 memory locations for the fastest method. Suppose the times for cer-

tain operations in the conmputer are:

Operation 
Time

Compare two integers P
Subtract two integers S

Look up an addressed location L

Tflen the fastest method for generating Y requires a total time of P + L
and 16" memory locations. In the example presented only 4 C(1 6 )memory
locations are required and an average generation time of



0. 1: (P + L) + 0. F -(2P + S + L) + 0. OOF -(3P + S + L) + 0. 001

OP 3+ S +L) 1 .21 *P +0. 20 (G),S +L

A schemacic for storing the four sets of discrete variables and

iS

the subsequent generation of the dec;ired random variables is presented in

figure 2.1.
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FIGURE 2.1

Flowchart for the Generation of Random

Numbers from a Discrete Distribution

P is a vector of probabilities (pi = .61i62i6 i'")

Y is a vector of t1be corresponding discretec variables (integer mode)

n is the rumbcr of elements in P and in Y.

$ is the base of the number system in which the 5..'s are represented

(for the 360/65 6 = 16, for a decimal machine a = 10).

LGT is the maximun length of the A-Table. If LGT is exceeded, the table

loading process ceases and N3 is adjusted (since N 3 was calculated on the

basis that loading would be complete).
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CHAPTER 3

GENERAL. '['CI ,IN QUI:S FO1Z Till GENERATI ON

OF PSEUDO-RAD)OM NU.MBIRS I AVING A

CONT1NUOUS DISTRIBUTION FUNCTION

Certain techniques of a rather general nature are used in some of

the routines described in this paper. They are especially well suited

for use in very fast computer programs. The principle of each technique

is described below and reference will be made to these techniques as they

are used in the specific generator programs.

3.1 The Composition Technique

- The fundamental procedure used for generating pseudo-random numbers

from a continuous probability distribution, as suggested by Marsaglia

[10], is based upon a decomposition of the density function f into a

mixture of 3 densities:

f(t) -pgjt) + p½2t-(t) + p 3g 3(t) (3.1.1)

where p, > P2 ' P3, PI + P2 + P3 = 1 and PI is very close to 1.

A random number from f(t) is ubtai ned as either a number from

g1(t), from g2 (t) or from g3 (t) with respective prohabi lities Pl, P2, P?.

Consider a density f(t) defiined froi:i all t > a (figure 3.1).
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f(t)

a b t

I
FIGURE 3.1

The density gl(t) is represented by the rectangles, appropriately

"standardized, including the shaded uppcr portions, and is defined for

* a < t < b. The width of the rectangles is A, a quantity whose value

is dictated by the nunber system used within the computer. For a binary

machine using hex.dcciimal arithmetic, A = 0.1(06) = 0.0625(10).

The total area represented by the rectangles is p, which clearly is

very closc to 1. The density g 2 't) is represented by the "triangular"

regions, iippropriately standardized, lying below f(t) and above g 1 (t),

and is also defined for a < t < b. The total area occupied by the

"triangles" is p 2.. The density g 3 (t) is defined for t > b and represents
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the tail of t(t). Its area is P 3.

Random variables having density gl(t) may be rapidly generated as

follows:

Define

N (b-a)/A (0.,.2)

and

t. = a + (i-1) A for i = 1,2,3, ... , N. (3.1.3)

Now assign each discrete t. a probability

P.= A f(t i+l) = .662" (3.1.4)S1 1-

The P.Is are simply the areas of the individual rectangles comprising

gl(t). Based on (say) the high order 4 digits of the Pi's store the

discrete t's in a table according to the technique described in

* -|Chapter 2 of this paper. Thus to generate a. random variable Y from this

* portion of gj (unshaded in figure 3.1), generate a uniform (0,1) random

number u : djd 2 .... If

N

ii 2i 3i 4i•-" i=l

1then allow the 4 high order digits of u, dd2d3d4, to locate a particular

t.i from the discrete table, as debscribed in Chapter 2, and

set Y = t. + A • (.dsdG...).
1

Random variables from the residual of g,, crrresponding to the re-

maining digits of the P.'s (.0000 .6.....) and represented by the shaded
1 51 C'i

region in figure 3.1, are generated according to the following scheme:
Let N, ti, and Pi be defined as before (3.1.2), (3.1.3), and (3.1.41;

and define:
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i 1 6 21 3i 4i (3.1.5)

(area cf the unshaded portion of the i rectangle),

R. H. (3.1.6)

th
(area of the shaded portion of the i rectangle),

T. F(t ) - F(ti) - P. (3.1.7)

1 P.

where

t.

) f f(ti )dt.

C(Ti is the area of the "triangular" region above the ith rectangle), and

N
£• = Ii{. (3.1.8)

1 1i=P

(total area occupied by the unshaded rectangles). It is obvious from

the above definitions that

N

P2 Z T. T(31.9)i~l 1

N
P1  X P. , and (3.1.10)

PI p1 = Z R

(See(3.1.1) for the significance of P, and P2). Now store the t's in

N consecutive locations. The order in which the t. 's are stored is not
1.

important . lowever, for convenience let D(l) denote the t-value occupying

They may he ov, lr1apped With the previously stored t-values in order

to save storage space.
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the first location, D(2) denote the t-value occupying the second loca-

ticn, etc. For each ti define a pair of values C(k) and R(k) as follows:

C(l) + j R[D(1)], (3.1.!2)

B(k) = C(k) + TID(k)], and (3.1.13)

C(k+l) = C(k) + RID(k+l)] (3.1.14)

for k 1,2, ... , N. RID(k)] and TID(k)] denote respectively the area

of the rectangle residue (shaded in figure 3.1) and the area of the

"triangular" region corresponding to the t-value occupying location

D(k). It is apparent that

B(N) = p, + P2 . (3.1.15)

If u is a uniform (0,1) random number such that p < u < P1 + P21

a random variable Y is generatc from either the rectangular residues

of g, or the "triangular" regions of g2 as follows:

If B(k-1) < u < C(k) then generate a new uniform (0,1) random number

v and set Y = D(k) + A • v. A random variable generated in this fashion

will have the density represented by the shaded rectangles in figure 3.1.

If C(k) < u < B(k), then the random variable Y must be generated from

the "triangular" density of g2 corresponding to the t-value occupying

location D(k). The method used depends upon the particular function

f(t). The same applies for random variables from g3 for t > b.
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The techniques used for the exponential and normal densities will be

described subsequently.

Since pl is close to 2, most of the time a random variable from

gl is generated. Though g2 and g3 may be complicated and require longer

running time, the average time per generation is small since they must

be handled so rarely.

3.2 The Acceptance-Rejection Method

Consider the density h(t) defined on the interval ((0,(i). See

figure 3.2. Now if uv is a pair

h(t) c h(&o)

y - -- ---

tt

FIGURE 3.2

of independent uniform (0,1) random numbers, x .o u (+1- ) and

y r v ' c will have uniform densities on (40,C1) and (9,c) respectively.

Suppose that y <_ h(x). Then the conditional distribution function of x

is given by

!x h(t) x
P[X < x ]Y < hL'x)] f x• f r't dydt f x oh(t)dt.

O U3,2.1
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Coiiscqucnt ly the conditional density of x given y h h(x) is h (x).

When a pair of independent uniform (0, 1) numbers, u and v, arc

generated and the resulting x and y satisfy the inequality y S<i~)

x is then a required random va-riate from h(x). Otheraise thc pair is

rejected and a new pair is generated and checked. It is clear that

the inequality will be satisfied with a high probability only if the

value c ~-2 is close to one. If not, the procedure will produce

a large proportion of inadmissable (u,v) pairs and reduce the efficiency

* of the scheme. Even when this proportion is small,* the time required

* to cheek y < h(x) is generally rather long conpared with that of the

* table look-up procedures. Consequently, the acceptance-rejection

method is best used for generating those infrequent values from the

"~triangular"t and tail regions described in section 3. 1.

3.3 Generation of Numbers with a Triangular Density

Let u and v be independent uniform (0,1) random numbers. Then

* T min (u,v) has the distribution function

* *G(t) 1 - P[T't] =I - Pju>t, v>t] 1I (1_t)2 , O<t<l, (3.3.1)

and the density function

g(t) 2(1-t), O<t<l. (3.3.2).

See figure 3.3a, A linear transformation T = a + bT produces a random

l2 2

' C unye wonait), densityfx tny h i (3.

When ~ ~ 2 paro ndpne t' a)frm(,) numibes (3andv,.ar
~~~~~~~~W geeae n h eutigxadystsyte nqaiyy<7)
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2

g~t

01

FIGURE 3 . 3 (a)

2

g(t')

a a+b tv

FIGURE- 3.3(b)
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3.4 The Distribution of the Minimumn of a Random

Number of Uniform (0,1) Random Variates: Some

Special Results for the Exponential Distribution

Let x = c • min(u:, u 2 ... , u n) where the u. are random indepen-

dent uniform (0,1) variates, c is a positive constant, and N is a dis-

crete valued random variable with probability function P(NRn) q(n)

for n = 1,2, ..... Then the distribution function of x can be expressed

as follows:

F(x) r PIX x j N n] PIN n]
n=l

n= 1

F(x) = I ( (1 - x/c)n q(n) 0 < x < c (3.4.1)
n1=

Now consider the special case

q(n) = c n/[n! (eC-l)] n =1,2,

The distribution of x becomes

?(x) =,1 *Z (c�-x) /n!(e -1) = 1 - (eC--)/(e -1)
n=1

F(x) (1-c x)/(1-e") 0 < x < c (3.4.3)

Thus x has the exponential distribution truncated un the right at the

value c.
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If, instead of thc probability function given in (3.4.2), N has

the distribution specified by

where A is a constant as defined in section 3.1, then the distribution

function of x becomes

with density

-X -A -A
f(X) =(e -e M/l - e (P-A)] , O<x<A. (3.4.6)

This is the distribution function of a randcim variable from the "tooth"

of the exponential distribution between 0 and A. See figures 3.4(a) and

3.4(b).

A

f(x)e X

A K-A X x

FIGURE' 3.4(a) FICURE 3.4(h)
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Figure 3.4(c) shows the density of a random variable from any other such

"tooth" defined by k A < z <(k)amK

(k+l) -A z
Ak

FTGUR'E 3.4(c)

It is obvious that all such densities are ident ical, a unique character-

istic of the exponential distribution. Consequently, a random variable

"from the " k+l) st "tooth" is always produced by taking • k + x

* where the valuc k Ais chosen by the technique described in section

* 3.1 and x is generated by taking A times the minimum of N uniform (0,I)

random numbers where N has the distribution (3.4.4). Its expected value

* when A = 0.1 ( i 2.02 or in general

E[N] A (eA A ("3.4.7)

Thc same unique "no memory' characteristic of the exponential dis-

tribution used above is also used for obtaining random variates from

g3 , the tail of the exponential density where t > c.

Let Y IV + X vlher• I is discrete valued with probability function
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c-kP111 w c kJ Ae- . Ac k, k 1,2,3, .... (3.4.8)

A (1 e'c)/e-c and x is independent of w and has the distribution func-

tion (3.4.3). The distribution function of Y can be written as

G(y) P Y fy w + xl] PIY < w c] + P[ I w, X < x] (3.4.9)

Since the distribution functron of W1 is

k
k )- -c-k

P[W < w c - kj A -e e
j=1

the expression for G(y) becomes

C(y) e +-c)+ Ae (1-e X)/(l-ec) 1 - ecy (3.4.11)

This is the required distribution function for variates from the density

cY truncated on the left at y = c. Thus values of t from g in the
3<

exponential case are generated as the sum of a discrete variate taking

values c, 2c, 3c, ... and a continuous variate from the truncated expo-

nential density on (O,c).

3,5 Geii;7rating Numbers from a 'Nearly Triangular'

Density: Application to the Half Normal Density

The results of this section are applied to the half normal density

f f(t) =2T -e 0 < t < (3.5.1)

fW) 27
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for the generaLion of random norm.-.- deviates to be described in chapter

4. Consider the concave and conv( ?riangular densities (members of g2)

depicted in figures 3.S(a) and 3.5(b):"

b

a

FIGURE 3.5(a)

S+c

b

JiJn iFIGURE 3.5(b)

S+

The parallel chords and tangents enclosing f(t) are determined by con-

struction as indicated in the figures. In both cases, the inner right

triangle. represents most of the area under the density F(t), This will

be true in general as long as the ratio a/b is close to one, A random

variate from the density represented by this triangle is generated as

described in section 3.3. Infrequently, a random variate from the shaded

area must be generated by the acceptance-rejection technique described

in section 3.2. Marsaglia ot al. [12] have combined these two procedures

as follows.



30

1) Generate independent uniform (0,1) random variables u and v.

2) If max(u,v) < a/b, put t = s + c • min(u,v)

3) If not, test bju-vj < f(s + c - min(u,v)).

.If yes, put t = s + c • min(u,v).

If no, go to step 1 and try again.

In o'rMder to show that this procedure produces a variate t with the re-

quired density, we conveniently take s 0 without loss of generality

and proceed as follows.

Define

m = min(u,v)

M = max(u,v)

x X= C I m

y = b(M-in) = b(u-v) (3.5.2)

Then the pair (x,y) is uniformly distributed over the triangle in figure

3.5(c)

b

y

0 c x

FICURF 3.5(c)



To verify this, consider the joint distribution function of x and Y:

F(x..y) PIX < x, Y < y) =Plr < x/c, M - m < y/b]

This is just the area of the cross hatched region in figure 3.5(d) which

is seen to be

F(x,y) 2 (y/b) (x/c) =2xy/bc ,O<x<c ,(3.5.3)

& O<y<b

1

b

0 xYU
c b

FIGURE 3.S(d)

Thus, (x,y) is a point randomly chosen from the larger triangle in figures

3.5(a) and 3.5(b). By the acceptance--rejection technique, if this point

falls within the smaller triangle of figures 3.5(a) and 3.5(b), the value

x =t has the triangular density -bx/c + a. Now the condition max(u,v)

< a/b is equivalent to:

bM < a

bl(M-iu) < a - bin =-bX/C + a
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or

y < -bx/c + a (3.5.4)

which means that (x,y) falls in the small triangle. If this condition

is not satisfied, a second check is made to determine whether the point

(x,y) falls within the shaded area betwc.n f(t) and Y2 in figures 3.5(a)

and 3.5(b). If so, then clearly

y = b(M - m) = blu - vi < f(x) = f(c •min(u,v)) (3.5.5)

as required by the second test. The acceptance-rejection principle in-

sures that every x value passing at least one of these two tests will

have the density f(t). The first test is rapidly made; the second test

involves evaluation of f(x) and is time consuming. The first test will

be passed with a probability

P[M < a/b] = (a/b) 2

as given by the distribution function of M = max(u,v). It is therefore

desirable to have (a/b) 2 close to 1 to achieve a short average execution

time. This will be the case if f(t) is "nearly triangular."

For the half normal density the ai/bi ratios are obtained as follows.

Case (a) "Concave Triangles" (See figure 3.5(a)).

Lot t. i c = s
1

ti1= (i+l)c =s + c, i -- 0,1,2, .... (3.5.6)
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The equation of the chord and the tangent are respectively:

Y= - b( S)/c +-, .
• 1

Y2= b(x-s)/c + ai (3.5.7)

The value of b. is clearly
I

b. = f(t.) - f(ti+I) f(s) - f(s+c) (3.5.8)11

The slope of both lines, - bi/c, must equal f'(Xi). Thus

-b = - x.e i - f (3,5.9)

* This equation must be solved iteratively for Ri. the abscissa of the

point of tangency. Finally, this value is substituted into the tangent's

equation to give

f f(i f (tl) = (-bi/c)(5i-s) + a. (3.5.10)
1 i+l 1 1- 1

Substituting the expression for b /c and solving for a. gives
i .1

a. f(ii)[l + Ri(Yci-s)) - f(s+c). (3.5.11)

Consequently fdr "concave triangles"

a ai/bi = [f(Ri){l + .i(i.-S)1 - f(s+c)]/[f(s) - f(s+c)] (3.5.12)

" 1

Case (b) "Convex Triangles" (See figure 3.5(b))

In this case the point of tangency occurs at the end of the inter-

val where x. t. s + c. The slope of both lines is given IY

1 141
-/c= f'(s c)

Si i i i i i i i i i1
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or b -cf
t (s+c).(.13

The value of I. is simply

f -( f (t f f (s) - sc).

m1 P

Con seq~uenrtly 0 1,r tov 0. t r; n

a i/b [f (S) fCS + L)]IJ- C f '(S+C)jJ (3.S. 14)

S=i

3.6 GenCrat ion of Random \'ari atcs from

the Tail Of the Half Norm.al Distribution

The Procedure suo-qestcd by) 'Marsaglia et al. [12] for the generation

of randoa;, vaite ron *ho tzeil of the half, normial distribution is based

on the rejection principle 6escriLbed in section 3.2. The. procedure is to

generate a pair of indepeaident ha]lf normial variates x, andl x2 such that

the point xm1 d) lies otitsiddý the quarter circle (see figure 3.6(a)).

III i

FR]R 3.6-,
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This is done by generating pairs of uniform (0,l) random numbers u
and 12 until 0 < u 2 + u2 < 1 and setting

1 2•. x ÷ = and 2w 2hr - d<w se thting ÷2 - fth on

,geeadp t 2ashion, ue wh + u2r) (3.6.1)

a2  /' -
2ln~i mu~) u~/ut +u~)(3.6.2)

I2

To show that the point (xix 2) lies outside the quarter-circle, let

w takeln(ua u2) where 0 < u2 + U2• 1. Then take the sum

X2+ X2 = a2 + 2w where 0 < w < - so that x2 + 2 a2 . I h on

(x 1 ,x 2 ), generated in this fashion, lies within the square (figure 3.6(a)),

it is rejected and a new pair of uniform (0,1) random numbers is generated

and tested. Otherwise the variable, x1 or x2, whose value exceeds a is

taken as the required random number.

-In order to show that this procedure produces the desired result,

let u and u be a pair of uniform (0,1) random numbers conditioned by

0 < U2 + u 2 < 1. Then the joint density of ul and u 2 is

f(u 1 ,u 2 ) 4/r, 0 < ul < 1, 0 < u2 < 1, 0 < U2  u 2 < 1.

(3.6.3)
Now define:

X = 2 + u2, 0 < X < 1, and (3.6.4)

Y = U2 /Ul, 0 < Y < ( (3.6.5)

Then the probability distribution of X is

I. rx) = ( X) = X - • x/)/T T 12•/) X (3.6.6)
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and the density of x is

f(x) = 1, 0 < x < 1.,.. (3.6.7)

Consequentlv X is uniform on (01). The joint density of X and Y is;

g(x,y) f(a,v) •J (4/ir)[1/2(1+y 2 )] 2/n(lty2 ) g W.
<2

(3.6.8)

Hence X and Y arc stLochastIcall ir..)epcnden.. Substitution of (3.6.4)

and (3.6.5) into (3.6.1) and (3.6.2) yields:

=x i T 7- 21nX • V/T7N+-77) (3.6.9)

x2 =a- -21n* V• TT 1/+Y•). (3.6.10)

The inverse transformation is:

---½X 2 +X2-a 2)
X=o 1 2 (3.6.12)

Y (X2/X1 (3.6.12)

The joint density of X1 and X2 is given by:

f(xlx 2 ) g(x,y) .sP

- : • -,( x2 + ,x2 -a2 ")
-[2/7T(1+),2) ](1+), 2 ) 1 e- " + ̂2-

,, __ ,.x 2  a2/2(F277- 22 (ve
-- : (¢ • e"':x~ wl) € ,, 3 -" 2) ( . . 3

a2? < 2+ 2

Clearly x1 and x2 arc independent random variables from the tail of the

half iorliIo1 distributio l (X1 ,X2 > a).



CHAPTER 4

GENERATION OF PSEUDOJD'ANDUM, N1LIBERS FROM! THE

EXPONEN'TIAL , GAMAA A, AM)D NORIMAL DISTRI BUTIONS

Before presenting the procedures for Lhe generation of random numbers

from thc exponential, gamma, and normal distributions, a simple example

is giveni demonstrating thu use of the techniques discussed in Chapter 3

for obtaining random variat~es from any continuous distribution defined on

a finite interval. In the interest of clarity all numbers are expressed

to the base 10. Consider the distribution defined by

Fly) =(y/2)(3-y
2 ) 0 < y < 1(.0)

wih enit' f(y) (3/2)(l-y2) 0 < y < 1. (4.0.2)

Using the composition technique presented in 3.1, f(y) is represented as

a mixture of 2 densities (since there is no tail):

f (y) = p191 (Y) + p2V2 (Y) (4.0.3)

As before, g I is a series of rectangles and 92 roprosent: the nearly tri.-

angular regions betweeon g1 an f. See figures 4.0(a), (b) , and (c).
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I-

0 y

FIGURE 4.0(a)

.9 y

FIGURE 4.0(b)

0 c
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As described in 3.1, define discrete variables

xi (i-I) •-A for iý1,2,...,10 and in this example A40.1 (10. (4.0.4)

Now assign each x. a probability P. as follows:

P, = A f(xi )" (4.0.5)

Now define a value T: as given in (3.1.7) the area of the triangular
i

th
region above the i rectangle:

Ti = F(x i+) - F(x) - P1. (4.0.6)

These values ar.ý recorded in table 4.0.1. At this point it is obvious

that the values of p, and P2, defined in (4.0.3), are p, = 0.9225 and

p2 = 0.0775. Next, the fou2r sets of the discrete values are stored,

based on the high order of digits of the Pi's.

1i

'i
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Since the P 's have only 4 digits, application of this technique will

account for all of g, and there is no rectangular residue in this simple

example, Since the composition of these 4 sets is constant (the distri.-

bution is parameter free), the sets may be overlapp•dt and considerable

storage space saved. Looking at table 4.0.2, set I occupies locations

2 through 6, set 2 occupies locations 4 through 40, set 3 occupies locations

18 through 67, and set 4 occupies locations 46 through 70. Locations 0

through 9 are also used for the generation of variates from g 2 , as de-

scribed subsequently.

TABLF 4,0.2
A-, •,O'ALE,

* Loc Con --!c Col Loc Con ILoc Con Loc Con Loc Con -cc Con

0 0.9 10 M 20 0.7 30 0.5 40 o 50 0.3 60 0.2

1 0.8 11 0.6 21 0.7 31 0.3 41 0.8 51 0.6 61 0.2

2 0.3 12 0.6 22 0.7 32 0.3 42 0.3 52 0.6 62 0.2

3 0.1 13 0.6 23 0.7 33 0.2 43 0.3 53 0,6 63 0

4 0.4 14 0.6 24 0.6 34 0.1 44 0.3 54 0.6 64 0

5 0.2 15 0.5 25 0.5 35 0.1 45 0.3 55 0.6 65 0

6 0 16 0,5 26 0.5 36 0.1 46 0.8 56 0.4 66 0

7 0,7 17 0.2 27 o.S 37 0.1 47 o.S 57 0.4 6- 0j

8 0.6 18 0.8 28 0.5 36 0 4s 0.8 58 021 6S 0

9 0.5 19 0829 0.5 )S) 0 49 0.8 S59 0.2 b9 cf.

70 A0.

_.• iI
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As presented in Chapter 2, define:

10

Qo 0, Qr = l0-r Z 6. (4.0.7)

and r 10
10 0, E = 2 6.. for r=1,2, 3 , 4 . (4.0.8)j=l i Jl

Using the above definitions define:

kk

so = 0, Sk 1.0 k Qr (4.0.9)
r=l

and
Nk = 11k-1 - 10 - SkI for k=1,2,3,4. (4.0.10)

The N.'s are identical to the quantity

S

r=0

in (2.0.3). Because of overlapping between the four sets, the NI's
kI

must be adjusted. Their values and the values of the S k'S are recordedi4

in table 4.0.3.



43

S -TAB• , F ,
Loc Con Loc Con

0 5 0 2

1 87 1 -46

2 920 2 - 52

3 9225 3 -9154

Table 4.0.3
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The procedure for generating random numbers from gj is:

1) Generate a uniform (0,1) random number u 0.d 3 d 2 ....

2) If d] < S(i), set Y = A(d 1 + NCI1} + 0.1 (.d 5d 6 .,.);

otherwise go to (3).

3) If d1d, < S(2), set Y ý A(djd 2 + N(2)} + 0.1 (.d 5 d 6 ... );

otherwise go to (4).

4) If dld 2d 3 < S(3), set Y = A(dld 2 d 3 + N(3)1 + 0.1 * (.dsd6...

otherwise go t) (5).

5) If dld 2d 3 d4 < S(4), set Y z A(djd 2 d 3dý + N(4)) + 0.1 (.d 5d6 ... );

otherwise generate a random variate from g2.

In order to generate random variates from g2, define:

C(1) = S + T[A(1)] and (4.0.11)

C(k+l) = C(k) + T[A(k)] for k=1,2,...9. (4.0.12)

This is identical to the definition given in (3.1.13), except that in

this example there is no rectangular residue. The notation T[A(k)] denotes

the area of the triangular region (the T.'s in table 4.0.1) corresponding

to the discrete value stored in the kth location of the A-table (Table

C40.2). The values of the C(k)'s are given in table 4,0,4. If u is a

uniform (0, 1) M'andomR 1,ýeQr such that U > S4 , the proper triangle of g2

may be chosen simply by testing:

u < C(k) until the condition is satisfied (note that C( 1.0)

The discrete value occupying location k of the A-table denotes the correct

triangle.

Ilaving selected the proper triangle of g , a random variate having

the density of that trianglec is to be gevnerated. This is accomplished

4
t
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through the use of the acceptance-rejection principle discussed in 3.2

and the technique given in 3.5. Consider a particular triangle or tooth

from g2 (figure 4.0(d)). 7le tangent and the chord are constructed as

indicated in 3.5
.47

b.1

a.

11 •••• FIGURE 4.0 (d)

, i
x. x.+.l x,+d.
i11 1 1

The inner right triangle encloses most of the area under f(x). A random

variate from the density of this triangle is generated as described in

3.3. Occasionally, a random variate from the shaded region must be gener-

ated by the acceptance-rejection technique. The valueý of ai, bi, and

d. are obtained as follows:

-. (ai/U.l) =f'(Xi) =3 i (4.0.13)

where x. is the abscissa of the point of tangoncy and

a. f(x.) - f(xi. ). (4.0.14)

-. 1.-.
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Substituting (4.0.14) into (4.0.13) and solving for xi yields:
1

x [f(xi) - f(x i+)]/0.3 (4.0.15)

The ordinate of the point of tangency is:

Yi f - f(xi+l). (4.0.16)

At x = yi, = y. and

b. = Yi + (ai/0.1)(ki - xi) (4.0.17)

The value of d. may be obtained by noting that:
1

(ai/0.1) = (bi/di) and hence di = (0.1 b bi/a), (4.0.18)

The values of ai/bi, di, and bi are recorded in table 4.0.4 in the

R-table, D-table, and B-table respectively.

t
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C-Tab I e R-Tab I Trihe H _-Tnb I
Loc Con Loc Con Loc Con Loc Con

0 .9370 0 .9870 0 .1013 0 .28875

1 .9500 1 .9855 1 .1015 1 .25875

2 .9555 2 .965S 2 .1036 2 .10875

3 .9580 3 .9231 3 .1083 3 .04875

4 .9650 4 .9730 4 .1028 4 .13875

5 .9690 5 .9524 5 .1050 5 .07875

6 .9700 6 .8000 6 .1250 6 .01875

7 .9815 7 .9836 7 .1017 7 .22875

8 .9915 8 .9811 8 .1019 8 .19875

9 1.0000 9 .9778 9 .1023 9 .16875

Table 4.0.4

II
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FIGURE 4.0(e)

Flowchart for the Geeneration of Random

Variates from

f(y) - (3/2)(1 - y) 0 < y < I
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The Pfocedurc for obtaining raom variates from g2 is:

1) Lot u be a uniform (0,1) rnndom nunber such that u >_4

2) Test u < C(k) for k = 0,1, ... , 9 until the inequality is

satisfied.

3) Generate inde-,ondent uniform (0,1) random numbers ul and u2 .

4) If mavx(uplu 2 ) < R(k), then set Y A(k) + D(k) • min(ul,u2,

Otherwise go to (5).

S) If B(k) u 1 u 21 _ f[A(k) + D(k) • min(u 1 ,u2)],

set Y = A(k) + D(k) min(up,u); otherwise go to step (3)

and try again.

A schematic of the entire procedure for generating random variates

from the density f(y), given in (4.0.2), is presented in figure 4 .0(e).

4.1 Generation of Exponentially

Distributed Random Numbers

Applying the composition principle presented in 3.1, the exponential

density function,

:' £~~(t) =e-t 0 < t < = 4 1 1

is represented as a mixture of three densities

f(t) = p 1 g1 (t) + p2 g 2 (t) + p3 g3 (t). (4.1.2)

As before, g is a series of rectangles defined for t < 4, g2 renresents

the toothlike region, between g, and f defined ior t < 4, and 93 is

the tail of f for t 4. The probabilities Pl. P2' and P3 are res.pec-

I



tively the areas represented by gl, g2 ' and g3.

As described in 3.1 a random variable Y having dc;,ity g, is generated

as follows:

Define

M , 4/A, where A = 10-1 for a decimal machine or A 16 for a

binary machine; and discrete variates (4.1.3)

t. = (i-i) A 6 for i = 1,2, ... , M. (4.1.4)

Each t. is assigned a probability

-ti+l

P. f(ti) = A " e = 6.1i6 2i6 3i.. (4.1.5)

Now, using the high order 4 octal digits (binary machine) or the high

order 3 decimal digits (decimal machine), store the t.'s according to the

technique described in Chapter 2. As in the case of the example given in

the beginning of this chapter, the sets of discrete variates are stored

in the manner that permits maximum overlap. See the D-table in the pro-

gram listing of CEN1 in the appendix; set 1 occupies locations 49A thru

4BE, : 2 occupies Incations 40C through 4AC, and set 3 occupies locations

37D th2ough 453. Locations 374 through 3B3 are used for the generation

of variates from E. and the residual of g1 as described in 3.1.

At this point define:

Qo 0, Q -r . 1 6ri (4.1.6)

r i
n10 = 0, D = Z Z 6.. for r = 1,2,3,4 (4.1.7)

j=l i=l 1'

for binary machines where the 6's •re octal digits and C : or r 1,2,3
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for decimal machines wherc the 6's are decimal digits and 6 = 10. Also

define:
kk

SO 0, Sk EQ k (4.1.8)
r=l

and

Nk 1k1 - ( 6S . for k- 1,2,3,4 (4.1.9)

in the binary case (P = 8) or k = 1,2,3 in the decimal case (a = 10).

The S-values and the N-values are recorded in the program listing of GEN1

in the appendix. Note that the N-values have been adjusted to allow for

overlap between the sets of the D-table.

The procedure for the generation of random variates froia this trun-

cated portion of g1 is: (binary case)

1) Generate a uniform (0,1) random number u = .d d2...

1 2

2) If d 1 d 2 < S2, set Y = Dfdld 2 + N2 ) + A - (.d 5 d 6 .. );

otherwise go to (3).

3) If did 2d3 < S3. set Y = 1d + Nd 3 + A .

otherwise go to (4).

4) If d1d2d3dL < S , set Y = D{dd2d3d4 + N}4  + A • (.d5d.. .);

otherwise generate a random variate from the residual of gl' g 2 '

or g 3.

Note that in the above procedure the testing begins with S 2 . This is

because 6 = 0 for all i since 0 < f(x) < 1 for 0 < x < 4.

Random variates from the residual of g and from g2 are generated

by first selecting one of the rectangles of g with appropriate probabil-

ity and then testingý to determine whether the required variate should

I



comne from the tooth or froli the residual corresponding to that rectangle.

This is accomplished as follows:

In M consccutive locations store ez-ch of the t. Is once (locations 374

through 3B3 of the D-table in- the listing of GYN1 in the appendix). For

each t. define a pair of values as given in (3.1.12), (3.1.13), and (3.1 .14)

C(U) S4 + I[D(D)], (4.1.10)

B(k) - C(k) + T[D(k)] and (4.1.11)

C(kQl) C(k) + R[D(k+l)], (4.1.12)

In the exponential case

T[D(k)] = C( + /A) e"(D(k)+A) (4.1.13)

and

R[D(k)] P[D(k)] - .6[1,Dik)]j[2,D(k)]6[3,D(k)]6[4,D(k)), (4.1.14)

where P[D(k)] is as defined in (4.1.5). The values T[D(k)] and R[D(k)]

denote respectively the areas of the triangular region and rectangular

residue lost upon truncation of P[D(k)] corresponding to the t-value

occupying location D(k). The values of the B(k)'s and the C(k)'s are

also recorded in the listing of GEN) in the appendix. A random variate

with a rectangular distribution is generated as described in 3.1, and in

the exponential case a variate having the density of one of the teeth of

g 2 is generated by the tchnique given in 3.4. The procedure for gener-
ating random variates from either the residual of g or from g2 is sum-

marized as lollows:
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1) Let u be a uniform (0,1) random number such that

S4 L U < P1 + P 2  1 - -

2) Test u < II(J) for J 1,2, . M... i, until the inequality is

satisfied (note B(M) = 1 -e') for same J = '.

3) If u < C(J'), generate a new uniform (0,1) random number v and

set Y = D(J') + A v (this produces a number from gj);

othervise go to (4).

4) Generate a new uniform Cv random number v and testn
AV Q(n) = Z L 3 /[j!(e - 1 - A)] for n 2,3,

j=2

until the inequality is satisfied for n n'.

S) Generate n' independent uniform (0,1) random numbers and set

Y = D(J') + A • min(u 1 ,u 2 , ... Un,). This produces a nunber

from g2.

A random variate Y having density g 3 is generated as a sum

Y = IV + X (4.1.15)

where X is exponential on (0,4) and IV has the distribution

P[' w = 4.k] = e-4k(e4 - 1), k = 1,2,..... (4.1.16)

The procedure for generating a random variate from g 3 is summarized as

follows:

1) Let u be a uniform (0,1) randon number such that u > PI + P2

-ii (k+l)
2) Test u < 1 - e for k = 1,2, ... until the inequality is

satisfied for some k = k'.



3) Sot W 4 - 1and11 generai to a no~w un 1i form (0, 1) random nolliber V.

4) Se~t u (p P2) -v (I - ce4) -v and enter the proceduire for

generating edpnot l lvdtrihutcd random, variate's on theo inter-

val (0,4) with u 7 (1 c v as the initial uniform numiber

and goner.ýte X.

5) Set Y =W + X

In [13) Marsaglia presents a scheriatic and the necessary constants

for the generation of random varintes from the exponential distribution.

Application of this method results in a very fast gecnrator program. As

is evident from the discussion herein the method is also exact; thi- accur-

acy of the result is dependent only on the wor-d size Of the Computer.

4.2 Gecneiation of Gamma D~istributed Random Variates

In order to produce random variates having the gaf.mma distribution,

the following result is used.

if X.i is a random variable with density-

m1

_.-x
'(x. e 0 < x. for i =1,2, .. ,n (4.2.1)

then the random variable

n
Y- F X (4. 2.2)

has the g anuina density

gl~y) (l/I(n))ynl eC , 0 < y < (4.2.3)

when the x. 's ar stochan;tic:illy indrpondet n. Consrquent rd, thc gnera-

tion of random variates from the gammdistribu tiondo l va onesly a ot inite)rO



1) Using. the I'10 t a M I VLn I i 1 .1, generate II, exponent i a I ly di stribmited

random Xmcr x, X.

.2) Set Y = .: x. (if a scale paaramcter B ý 1 is desired, set•1 1

n
Y X • ix).

i=1

4.3 Generation of Random Variates

having the Standard Normal Distribution

Using the composition principle of 3.1, the absolute normal density

f(t) /2 t e- t , t > 0 (4.3.1)

is represented as a mixture of three densities

f(t) = plgIjt) + p 2 g 2 (t) + p 3g 3 (t) . (4.3.2)

Again, g, is a series of rectangles defined for t < 3, g2 represents the

toothlike regions above g I and below f defined for t < 3, and g3 is the

tail of the density (4.3.1) defined for t > 3.

Random variates from g, are generated by means of the technique given

in 3.1. Define

-~1
M = 3/A where A = 10 (decimal machine)

-1
or A 16 (binary machine), and (4.3.3)

discrete variables

t i - j) L for i M 1,2 , N. (4.3.4)•I t , ..
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Applyingý the stox-rage techniqcue c rio in Chapijter 2, ,stor thCe t '
iIi

b_---=- !asedi l o ,,n th :i2ý or'r. 4 oc a i it b la ",m c il " " h")Jp r

Spyin 8 the l storn g o e~ii tehie apedescix). No dc- n value

Q0 = 0, Qr =-r E 6 ri(4.3.6)
and

110 =0, Hr = E x6.(.37

i=

also define k
SO' =  k= z (4.3.8)

r= 1

and

N o = R k-l = -
3 k-' (4.3.9)

for a binary machine r,k = k1,2,3,4 and 8 for a decimal machine,

r,k = 1,2,3 and p = 10. The S-values and N-values are also recorded in

the program listing of GEN3 (note that the N-values have been adjusted to

allow for overlap between sets).

The procedure for the generation of random variates from this trun-

cated portion of g, is: (binary case)

1) Generate a uniform (0,1) random number u .dld 2....

2) If d 1 d 2 < S2 , set Y = A{d 1 d2 + N2 ) + A (.d 5 d6...);

othew,,ise go to (3).



3) If dc Id 2 d 3 < S3 , set Y = A{d 1 d 2 d 3 4 N3 } + A • (.d 5 d 6 ...

otherwise go to (4).

4) If dId2d dd: < S 4 set Y = Afdd dI 2 • N + A (.d
1 2 3 NO4 (. 5d

otherwise generate a random variable from g2 ' g3 , or the

residual of gl.

Randona variates from the residual of gI and from g2 are produced

by first choosing one of the rectangles of g, with appropriate probability

and then testing to determine whether the re4,:ircd variate should come

from the rectangular residue of g, or from the toothlike region of g 2 .

As presented in 3.1, this is accomplished aF follows:

In M consecutive locations store each t." once, and for each t.1 1

defirne a pair of values as ii (3.1.12), (3.1.13), and (3.1.14):

CM1) = S, + R[A(l)], (4.3.10)

B(k) =C(k + T[a(k)], (4.3.11)

C(k+l) = C(k) + R[A(k+l)]. (4.3.12)

Note that in the listing of GEN3 this portion of the A-table occupies

locations 690 thru 6BF. 11,'wever, for convenience it is assumed that

location 690 correspond to A(l). R[A(k)] and T[A(k)] denote respective-

ly the area of the rectangular remnant and the area of the toothlike

region corresponding to the t-value occupying location A(k). For the

normal case:

R(A(k)k P[A(ý)]- .6[1,A(k)]M[2,A(k)]6[3,A(k)]6[4,A(k)] (4.3.13)
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where P[A(k)] is defined in (4.3.5) as

P[A(k)] A f(A(k) + A) A • ( (k)

--.6[1,A(k),12,A(k).....(4.3.14)

and
T[A(k)] = F(A(k) + F) (A(k)) - P[A(k)] (4. 3.15)

where Fx
F(X) . ex"it 7 dt (4.3,16)

Once having determined whether a variate with a rectangular density (gl)

or a variate with a toothlike density (g 2 ) is required, the schemes

given in 3.1 and in 3.5 are used to produce the variate as required. This

procedure is summarized as follows:

1) Let u be a uniform (0,1) random number such that S 4 u p< P 2 + P2

F(3).

2) Test u < B(k) for k = 1,2, ... , M until the inequality is satisfied

for some k = k'.

3) If u < C(k'), then generate a new uniform (0,1) random number v

and put Y = A(k') + L - v (this produces a variate from gj);

otherwise go -to (4).

4) Generate independent uniform (0,]) random numbers uI and u 2 .

5) If max(ul,1 u2 ) <_D(k') , set Y = A(k') + A • min(u ,u 2 ). This

produces a variate from g 2 as described in 3.5; otherwise go to (6).

6) Set W - ((A min(l 1 ,u 2 ) - •) •2 A(k') + A • min(u 1 ,u 2) + A]

* The 0(k) s are tabled values of the ai /b. ratios given in (3.5.12)

and in (3.5.14) corresponding to thW. t storeA in A(k').
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and test III u21 E(k') • - 1) * If yes, set

Y = A(k') + A •min(uu 2). If no go to step (4) and try again.

A random variate from the density 93 is produced by the technique

presented in 3.6. An absolute normal variable lYl, conditioned by ~IY > 3,

is required. The procedure is su::,.m.rized as follows:

1) Generate pairs of uniform (0,1) random numbers u 1 and u 2 until

the condition u 2 + u2 < 1 is satisfied.1 2

2) Form pairs x1 and x2 as described in (3.6.1) and (3.6.2)

X, (f [9 - 2ln(ul + U 2)/{u1 2

x U [(9 - 21n(u 2 . u2 ) + U2
2 1 22 /u 2 u

3) Test x > 3. If yes, set Y = x1 . If no, test x > 3. If yes, put
1 2

Y = x 2 . If no, go to step (1) and repeat the procedure.

In [12] Marsaglia presents a schematic and the required constants

for the generation of random variates from the absolute normal distribu-

tion. This method results in random variates having the density (4.3.1).

In order to obtain random variates from the standard normal distribution.

½t 2

f(t) = (I/2CT-h- , - < t < , (4.3.17)

a random + or - sign must be attached at some point in the procedure. In

GEN3 this is done by generating a uniform (0,1) random number u and testing

u < ½. If yes, a - sign is affixed to the variate; otherwise a positive

variate is returned.

The procedures presented in this chapter derive their speed from the

This c'xprt.usiWnis simply al altcrnativ, way of testing b.ilu-vj <
f(A(k') + • min(ulU )) .
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fact that the vast majority of vwriates generated come from the truncated

portion of gt" It requires only the generation of a uniform (0,1) randomn

nunber, a series of comipare instructions, and a table lookup. i hile

the generation of variates from g2 and g 3 may be somewhat time consuming,

such variates are required only rarely.* Consequently, that average time

per generation is quite fast. As is evident these methods are exact.

Precision is limited only by the word size of the computer.

a!

?i



Ct L\PTER 5

RESUL1TS OF IE ',T;' P1 RI.OI-hED ON

SEQUENCES OF PSHIDO-OR\NI•,M, NLUhPAERS

5.1 Random NuMJbers From The

Uniform (0,1) Distribution

The tests performed on sequences of independent uniform (0,I) random

numbers were suggested by MacLaren and Marsaglia in [9]. Tihe stringency

of these tests is justified in that the procclures for the generation of

random variates from other distributions depend heavily upon the method

used to obtain uniform (0,l) random numbers.

The tests made were chi-square (x 2 ) goodness of fit tests on the

distribution of the random numbers, pairs of random numbers, ti'iples of

random numbers, and the maximum and minim.um of n random numbers. In

general a sequence of Z variables YI,Y23..., Y was calculated from the

sequence of random uniform variates. The range of the Y. was divided
1

into m cel's of equal probability, p, and the number of occurrences, Oe.

in each cell counted, The X2 statistic

X2 = Z (0.i - Z p) 2 /k . p (5.1.1)
i=l

with in - I degrees of freedom was calculated and transformed to a standard

normal dcei ate

T (2 x2
- (2 (m - 1) - 1) (5.1.2)



for each test. This form is valid for ni ; 31. The significalnce levlcl

of this normal deviate was th0en computcd as

JT
i i

In eaich test a total of 100,000 uniforla numbcrs tvas generated. For

convenience the n~uiibrs were generated in 10,000 sets of 10 uniform

numbers each. Five separate runs were made and the tests performed as fol-

1) Uniformity. T'he unit interval was divided into 1000 segments.

Each segment has an expected value of 100 occurrences. The x2 statistic

was computed as

1000
X (0. - 100)2/100(5.4

where.0. is the number of observed occurrences in the i tnsegment.

2) Pairs. Successive pairs of uniform nuAbers were taken. as the

coordinates of a point in the unit square. The unit square was par-

titioned into 100 cells, each with an expected value of 500 occurrences.

The C 2 statistic was computed as

10 10
X (0.ý - 500)2/s00 (5.1.5)

where 0~ is the number of observed occurrences in the ij thcell.

3) Tripl1es. SuJccessive trip] eS Of 117ii forl n1U!0bers were taken as

the coordinates of a point in the unit cubeO (every' tenth number was sk-ip-

ped) . The uinit cubhe was1 parti ionced into 10010 cells5 with an eXpected
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value of 30 occurrences in each cell. The %2 statistic was computed as

10 10 10
x E I 1 (0i 30)2/30 (5.1.6)

i=l j=1 k I

where 0 i s the numfber of observed occurrences in the ijkth cell.

4) Maximum of n random valucs. If ij ,u 2 , ... un are independent

uniform (0,1) deviatcs, then

1 = max(u 2 ... Un) (5.1,7)

should have the distribution

P (1 < a) P (a an for 0.< a < 1, and (5.1.8)

F(W) =[max(ul~u., ... , Ud ln)] 5 1 9

should be uniform!S" distributed over the interval (0,1). A total of

10,000 W's were generated for each n, and F(W) was tested for uniformity

using the X2 goodness of fit test for 100 equal subintervals, The X2

statistic was computed as

100
X2= (0 - 100)2/100 (S.1.10)

thwhere 0. is the number of observed occurrcnces in the i subinterval.1

In this test n takes the values 2 and S.

5) Minimum of n random values. This test is the same as that for

the maximum of i except

IV = min(n 1 ,u 2 , ... , Un) and (5.1.11)
n



6 S

and

F F(W) = I - (1 - I(.n.12)

which should be uniformly distributed over the unit interval. The

.10,000 IV's were segmented into 100 equal subintervals and the y2 test

computed as in (5.1.10). In this tcsten takes the values 3 and 10.

The results of these tests are reported in Table 5.1.1. The results

compare favorably with those presented in [9] and justify the use of this

particular uniform (0,I) random number generator.
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TABLE 5.1.1

RUN t I

TEST CIll-SQUARE D.F. SIGNIFICANCE

UNIFORIITY 975.400 999 0.30186688

PAIRS 89.6720 99 0.25987495

TRIPLES 1034.7333 999 0.78918171

MAX OF 2 97. 1800 99 0.46241028

MAX OF 5 80.7800 99 0.09257838

MIN OF 3 109.5200 99 0.77766504

MIN OF 10 75.0400 99 0.03713434

RUN #2

TEST CHI-SQUARE D.F. SIGNIFICANCE

UNIFORMITY 1047.1600 999 0.85902187

PAIRS 92.8440 99 0.34129536

TRIPLES 1022.4667 999 0.70302930

MAX OF 2 104.4800 99 0.66267689

M%.X OF 5 96.9800 99 0.45671365

MIN OF 3 102.1000 99 0.60032472

MIN OF 10 97.7400 99 0.47836695
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TABLE 5.i,1 (continued)

RUN p13

TEST 
CIII- SQUARE? 

1)C

UN t FO RIqI TYS 

i F CM E
1006.

3 4 0 0  999
PAIRS990.5 

9 8093. 872005649oTRIPLES 
93.0 

99 
0.36930366S293.5400 

999 
0.88131258MA .X O F 2 10 .5 o 99 0.36019046

MqAX OF 5 

9104. 5000O.3 

0 9 6

MIN OF 3 99
MIOf-0102. 7400 990.66318213

99
MIN F 310 27.0 009 0.61749364

O699 0.72480337

RUN #4TEST 
CUItI-SQUARE 

D.P. 
SIGNIfICX\pCPU'NIF OIJl•ITY 

SI •" A CPAIRS 
970.2600999

103.9040 
0.26223433TRIPLEs 

91084.4667 99.649798213
MAX OF 2 

99 
01 8 1 3

83.2400 9 0.97021768M A X O F 5 
9 9 0 . 41 2 6 0MI f.396.42009901863t'IIN OF 3 

99 
70

AIIN OF 10 76.700o 99 0. 4407S2.90

0. 04945168
99 

0, 890,40197



68

TABLE 5.1.1 (continued)

RUN #5

TEST CIII-SQUARE D.F. SIGNIFICANCE

0

UNIFORMITY 1052.4000 999 0.88303445

PAIRS 82.5080 99 0.11705985

TRIPLES 1013.5333 999 0.63124447

MAX OF 2 92.6200 99 0.33528034

MAX OF 5 98.8400 99 0.50965471

MIN OF 3 140.6600 99 0.99687357

MIN OF 10 136.3000 99 0.99333696
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5.2 Random Numbers Hlaving

A Discrete Distribution

Sequences of random numbers from the binomial density

?N x)N-xf(x) (X) -(1 G < p <1, x=O,l,...N (5.2.1)

were generated for a variety of parameter combinations. The range of

the variable was diiided into k intervals of probability qi, such that

the expected value of each interval, m • qi, was at least 10. The X2

statistic was computed as

k
X2 (0 - in q.) 2 /m q. (5.2.2)

thwhere 0. is the number of observed occurrences in the i interval, and1

m is the size of the sample generated. The significance level was com-

puted as

S = (1/P(v/2)) . f e t (v/2 dt (5.2.3)0

where v = degrees of freedom, in this case v k-l. The results of

these tests are recorded in table 5.2.1. A sample size of 1000 random

numbers were generated for each test.

Random nunfters 'from'the Poisson density

f(x) = )Ce-/x! , 0 < X < , x = 0,1'.... (5.2.4)

and from the negative binomial density

.r+x-1

f(x) = (xl) " . (1 -p)x, r > 0, 0 < p < 1, (S.2.5)

x = 0,1,2,..,,-;
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were testcd in the same manner as random numbers from the binomial density

(5.2.1). The results of these tests are recorded in table S.2.2 and 5.2.3

respcctixCely. -
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TABLE 5.2.1

RESULTS OF CIlI-SQUARE GOODNESS OF FIT TESTS

ON RANDOM NUMBERS FROM TIlE BINOMIAL DENSITY

P N D.F. CHI-SQUARE SIGNIFICANCE

0.100 10 4 6.03494 0.8034458581

0.100 20 6 6.44102 0.6243600635

0.100 30 7 2.52631 0.0748969943

0.100 40 9 6.33123 0.2936355148

0.100 50 9 12.92191 0.8338284965

0.200 10 5 7.56431 0.8180614798

0.200 20 8 16.34847 0.9623445588

0.200 30 10 15.13733 0.8728654417

0.200 40 11 9.00770 0.3788180126

0.200 SO 13 12.00444 0.4727203102

0.300 10 7 7.97911 0.6655606411

0.300 20 9 10.98540 0.7232888983

0.300 30 11 17.78713 0.9133467551

0.300 40 13 12.08372 0.4792085395

0.300 50 15 21.66071 0.8829858823

0.400 10 7 7.29406 0.6010818180

0.400 20. 10 12.18194 0.7269356404

0.400 30 12 20.64248 0.9441325898

0.400 40 14 10.05124 0.2415723570

0.400 50 16 12.35961 0.2811236434

0.500 10 8 6.86156 0.4483592431

0.500 20 10 12.57912 0.7518355135

0.500 30 12 10.41700 0.4205727006

0.500 40 14 23.28293 0.9441810635

0.S00 50 16 9.42171 0.1049637735

0.600 10 7 6.92477 0.5632454466

- 0.600 20 10 18.27415 0.9494885520

j0.600 30 12 10,17474 0.3993657394

0.600 40 14 11.25580 0.3341658613

0.600 50 16 10.03645 0.1352S18684
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TABLE 5.2.1 (continued)

P N D.F. CIII-SQUARE SIGNIFICANCE

0.700 10 7 3.47126 0.1617396643

0.700 20 9 10.70221 0.7033259190

0.700 30 11 12.02199 0.6380075901

0.700 40 13 13.88283 0.6178529373

0.700 s0 15 18,60988 0.7680404078

0.800 10 5 4.53985 0.5254310881

0.800 20 8 16.74590 0.9671335640

0.800 30 10 10.97150 0.6402573630

0.800 40 11 9.02074 0.3800224541

0.800 50 13 15.05620 0.6961423824

0.900 10 4 3.31137 0.4928666476

0.900 20 6 4.40204 0.3775593406

0,900 30 7 6.78871 0.5487935778

0.900 40 9 6.74965 0.3368342656

0.900 50 9 5.04256 0.1694175512
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RESUL'rS OF Cill-SQUARE COODOESS OF FIT TESTS ON
RANDOM NUMBERS FROM THtE POISSON DENSITY.

LAM , F. CGIll-SQUARE SIGNIFICANCE

5.00 I0 13.57(o2 0.8068012578

10.00 15 8.51890 0.0986988385

15.00 17 16.33853 0.5000245564

20.00 20 18.35403 0.4359007928

25.00 21 28.70494 0.8787325544
30.00 23 24.94425 0.6468336304

S35.00 25 26.91360 0.6397852204
40.00 27 43.19749 0.9750174127

45.00 28 22.55633 0.2450911949

50.00 30 23.26187 0.1956567510

S5.00 30 42.01434 0.92862834 30

60.00 31 34.81330 0.7087406320

65.00 33 29.49011 0.3573849816

70.00 34 29.73472 0.3231975827

75.00 35 26.18810 0.1410044103

80.00 35 26,80832 0.1619395204

85.00 36 21.61020 0.0278060381

90.00 37 28,29852 0.1527661009

95.00 38 30,51639 0.1992224404

100.00 39 37.108S50 0,4435994584

TABLE 5.2,2
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TABLE 5.2.3

RESULTS OF CIUI-SQUARE GOODNESS OF FIT TESTS ON 10,NDOM

NUMBERS FRO.M TIlE NEGATIVE BINOMIAL DENSITY.

P R D.F. CHI-SQUARE SIGNIFICANCE

0.100 2 41 36.08627 0.3115372475

0.100 4 57 51.64328 0.3244292796

0.100 6 67 77.44254 0.8201664431

0.100 8 72 54.21390 0.0583581269

0.100 10 76 S8.52535 0.0683503608

0.200 2 23 20.00081 0.3581367902

0.200 4 33 27.73007 0.2730820886

0.200 6 40 43.00986." 0.6563763897

0.200 8 45 42.83166 0.4357673160

0.200 10 49 38.69528 0.1455417220

0.300 2 15 11.10495 0.2548804445

0.300 4 22 25.94653 0.7460151638

0.300 6 28 17.46899 0.0612580512

0.300 8 31 25.10221 0.2368731801

0.300 10 34 18.65952 0.0151991805

0.400 2 11 12.32864 0.6605459138

0.400 4 16 7.20666 0.0309309696

0.400 6 20 20.18198 0.5534007984

0.400 8 23 23.12594 0.5466209213

0.400 10 25 22.04679 0.3669595654

0.500 2 8 4.96920 0.2391366628

0.500 4 12 13.04976 0.6345655810

0.500 6 15 16.03409 0.6202105433

0.500 8 17 25.16863 0.9090016643

0.500 10 19 24.55579 0.8243107298

0.600 2 6 13.11971 0.9588261108

0.600 4 9 14.42509 0.8920130256

0,600 6 11 13.29194 0.7253265963

0.600 8 13 17.84469 0.8364937782
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TABLE 5.2.3 (continued)

P R D.F. CHII-SQUARE SIGNIFICANCE

0.600 10 14 13.95647 0.5470410000
0.700 2 5 6.42472 0.7329438096
0.700 4 7 11.10162 0.8657526004
0.700 6 8 9.98931 0.7342226732
0.700 8 10 4.82568 0,0974859792
0.700 10 11 14.96953 0.8161040822
0.800 2 3 1.03482 0.2071720727
0.800 4 2.88184 0.2818034287
0.800 6 6 1.48994 0.0398398009
0.800 8 7 4.59512 0.2907654804
0.800 10 8 2.13612 0.0234479888
0.900 2 2 0467942 0.2880246110
0.900 4 3 0.23420 0.0281120703
0.900 6 3 4.99992 0.8281970919
0.900 8 4 2.59324 0.3719796012
0.900 10 4 2. 34658 0.3276973945
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5.3 Rhandom Numbers From Continuous

Distribution Functions

Sequences of random numbors from the exponential

f(t) = -t 0 < t < -(..0

and normal

f(x) = (1/V, e , -C < x < (5.3.2)

densities were generated, and segmented into 20 intervals of approximate-

ly equal probability, pi 0.05. Samples of im 1000 random numbers were

generated and the X2 statistic computed as

20
X 2 (0. - m . pi) 2 /m p pi (5.3.3)

* where 0. is the number of observed occurrences in the ith interval. The

significance level was calculated as given in (5.2.3) with v = 19. The

results of these tests are given in tables 5.3.1 and 5.3.2.

Sequences of random numbers from the gamma density

f(t) = (1/1'(n)) tn-1 C-t 0 < t < C, (5.3.4)

were tested in a somewhat different manner. If t is a variable with

density (5.3.4) then

y = 2 t (4 n - 1)n (5.3.5)

should have an approximate standard normal density when n is large.

Sequences of ni ga;imia distributed random numbers were generated and using

the t ransforiati on (5.3.5), transformed to m approximately standard normal

variables. AS before, the normal distribution was partitioned into 20
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RESULTS OF CHI-SQUARE (;OODNESS OF FIT TESTS ON RANDOM

NUMBERS FROM THE EXPONENTIAL DENSITY, F(X) EXP (-X).

D.F. ClII-SQUARE SIGNIFICANCE

19 20.76000 0.6497876

* 19 11.24000 0.08441989

* 19 17.64000 0.4534074

19 22.68000 0.7482694

19 13.68000 0.1979842

19 18.52000 0.5120074

"19 11.48000 0.0933650

19 17.36000 0.4345072

19 24.24000 0.'8128932

19 37.24000 0.9925960

TABLE 5. 3. 1
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RESULTS 0F C11m-SQUARE GOODNESS OF FIT TESTS ON RANDOM

NUMBERS FROM THE NORl!tUL DENSITY

D.F. CHII-SQUARE SIGNIFICANCE

19 19.59699 0.5808149783

19 25.42150 O.8528693863

19 18.29836 0.4974018037

19 6,71247 0.0044039802

19 14.75770 0.2621316817

19 19.91207 0.6001134403

19 20.76446 0.6500395713

19 23.50146 0;'7840244000

19 11.96570 0.1129139927

19 18.02468 0.4792096579

TABLE 5.3.2
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intervals of approximately equal probability P1 = 0.05, and the x2

statistic computed as before. The results of these tests are recorded in

table 5.3.3.

RESULTS OF CHI-SQUARfE GOODNESS OF FIT TESTS ON TRANSFOPL1ED

GAWIA RANIOM NUMBE}RS

SAMPLE SIZE N D.F. CHI-SQUARE SIGNIFICANCE

100 50 19 12.30156 0.1276659399

100 100 19 14.27597 0.2326276646

100 200 19 13.79290 0.2043727108

200 so 19 13.99520 0.2160288470

200 100 19 20.25710 0.6207407158

200 200 19 23.61244 0.7885588803

500 50 19 23.13291 0.7684615439

So0 100 19 21.91446 0.7114659110

500 200 19 32.02104 0.9689153752

TABLE 5.3.3

5.4 Discussion of Results.

It should be eniphasized that no test or series of tests can assure

the suitability of a given sequence of random nwubers for a particular

problem. When possible the sequence should be tested on a similar

problem with known solution. Howrever, the results presented here esta-

blish the fundamental reliability of the generation procedures presented

in this paper. The significancc levels obta-ined should follow thc uni-

form distrihution on (0,1) if the corr,:p0n1Li. i-, nuil hv'paOthIs i• tested

are valid. The ohove results are in agreement with this condition.



Cj:APTER 6

DESCRIPTION AND USE

OF GENERATOR PROGRAMS

6.1 GENO

GENO supplies the user with a very fast procedure for the generation

of independent uniform (0,1) random numbers with density

f(u) 1, 0 < u < 1. (6.1.1)

The method used was suggested by Dr. Rol.f Bargmann [1] and is a form of

the multiplicative congruential procedure,

Un+1 a • un mod 232 (6.1.2)

where a = 513. This procedure requires that U0 , the starting value, be

an odd positive integer.

GENO is written as a subroutine with entry point URAN. It is called

as follows:

U URAN(IOD), (6.1.3)

where "IOD" is the starting value and must be an odd positive integer.

The desired random number U in (6.1.3), is returned to the calling program

in single precision real mode.

GENO requires 20 words (80 bytes) of storage space and an average

time per generation of 25 uscc.
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6.2 GUN1

GENi provides the user with a fast procedure for the generation of

exponentially distributed random numbers

i f(x) = e- , 0 < x < •.(6. 2. 1)

The method used is that described in 4.1, and presented by Marsaglia in

[13].

GENI is written as a subroutine with entry point RANEXP. It is called

from a FORTRAN main program as follows:

X = RANEXP(IOD). (6.2.2) I
The parameter 11IOD" primes the scheme for the generation of uniform (0,I)

random numbers, "IOD" must be an odd positive integer to insure the proper

generation of u. The required random number x in (6.2.2) is returned to

Lhe calling program in single precision real mode.

* The average time per generation is approximately 70 usec. Memory

*" requirement for GENI is 307 words (1228 bytes).

6,3 GEN2

GEN2 supplies the user with a fast procedure for the generation of

ganuna (c n, • = 1)

1-i -yg(y) = l/r(n) y • e , 0 < y < C (6.3.1)

distributed randoin numbers. The technique used is described in 4.2.

GEN2 is written as a subroutine with entry point RANCAM, and is

called from a FORTRAN main program as follows:
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Y = RANGAJ(IOD,N). (6.3.2)

As before, "IOD" must be an ocdd positive integer and n "N" in (6.3.1).

The required variate is returned in single precision real mode.

GEN2 requires 313 words of memory space and approximately 65 • N

usec per generation for N > 1.

6.4. GEN3

GEN3 supplies the user with a fast procedure for the gen2ration of

random numbers from the standard normal density

f~x) =(/ ) ,- < x < •. (6.4.1)

The procedure is described in 4.3 and by Marsaglia in [12].

GEN3 is written, as a subroutine and is called from a FORTRANN main pro-

gram as follows:

X = RAN0O,0.(IOD). (6.4.2)

The parameter "IOD" must be an odd positive integer, and the required

variate X in (6.4.2) is returned to the calling program in single precision

real mode.

Memory requirement for CGIN3 is 442 words. The average time per genera-

tion is approximately 65 uscec.

6.5 GEN4

GEN4 provides a fast proccdure for the generation of random numbers

from the binomi al distributiot:n

f(•) Q ( X (1 _ p) 0 < p <, xO.,..,n. (6.5.
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GEN4 is written as a subroutine with two entry points, BSETUP and RAUNBI.

The user calls BSF.TUP with the parameters "P" and "N" e.g.

CALL BS1:TUP((P,N). (6.5.2)

BSETUP calculates point probabilities using the recursion relation

Nf(O) = ( - P)N .and (6.4.3)

f(x+l) = f(x) • P (N-x)/((x+l) ( l1-P)).

The four sets of discrete values are then stored using the procedure de-

scribed in Chapter 2. BSETUP need be called only once for a given "P"

and "N", but must be called at least once prior to calling RANBI.

RANBI addresses the very fast scheme that generates the required

variates. It is called as follows:

X = RANBI(IOD) (6.4.4)

where "IOD" must be an odd positive integer, and X is returned in single

* precision real mode.

In its present form GEN4 requires the "P" be in the real mode,

, *0 < P < 1, and that "N" be in the integer mode and not exceed 255. The

program requires 948 words of memory anl an average time per generation of

approximately 35-40 usec, Figure 2.1 describes the flowchart of GEN4

except for the section that computes point probabilities.

If the user desires random numbers returned in the integer mode, he

need only delete

I STNUSm!

199 ST 0, RES

200 MVI RIS, X'46'

201 AE 0, R1S
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and change the designation RANBI to IANBI in his calling.statement and

in statements

170 ENTRY RANBI

171 USING RANBI, 15

* 173 DC CL7' . .RANBI'
0

174RANBI STM 1,3, 24(13).

Storage requirements may also be altered simply by changing

STMT

146 C 7, = F'2000'

222 DS 2000XLI.

6.5 GENS

GENS supplies a fast routine for the generation of random numbers from

the poisson density

f(x) = /Xe x! , 0 < , x = 0,. (6.5.1)

Since the domain of x is infinite, it is neccessary to truncate the distri-

bution. This is done at both low and high point values whenever a point

probability is less than 16-.

GENS is written as a subroutine with two entry points, PSETUP and

RANPOI. The user calls PSETUP with the parameter A, e.g.

CALL PSETUP(ALAM). (6.5.2)

PSETUP calculates point probabilities using the recursion relation

f(o) e

Sr~x+l) -- fC×) • XI(X+I), (6.5.3)



and stores the four sets of discrete values by means of the technique

described in Chapter 2. PSETUP need be called only once for a given A,

but must be called at least once before the initial call to RANPOI.

The entry point RMNPOI addresses the very fast scheme that performs

the actual. generation of the required variate. It is called as follows:

X = RANPO1(IOD), (6.5.4)

where "IOD" must be an odd positive integer and the desired random number

X is returned in single precision real mode.

GEN5 requires 972 words of memory space and an average time per gener-

ation of approximately 35-10 usec. The flow of GENS follows that presented

in figure 2.1 except for the section that computes the point probabilities.

If the user desires his result returned in the integer mode, he

need only delete

STMT

190 ST ORES

191 MVI RES, X'46'

192 AE ORES

and change the designation RANPOI to IAXPOl in his calling statement and

in statements

STMT

161 ENTRY RANPOI

162 USING RANPOI

164 VC CL7P RANPOP

165 RANPOI STM 1,3,24(13)

Storage requirement may also be altered by changing
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STNIT

137 C 7, = F'2000'

211 A DS 2000XLI

6.6 GEN6

GEN6 provides a fast routine for generating random numbers from the

negative binomial density

-x~r-l )pr x
f(x) = ( x ) p (l-p) , 0 < p < 1, x =0,, ... , (6.6.1)

and r > 0.

The domain of x is infinite, consequently, the distribution is truncated

at both low and high point values whenever a point probability is less than

16-4"

GEN6 is written as a subroutine with two entry points, NBSETU and

RANEBI. NBSETU receives the parameters, p and r, and calculates point

probabilities using the recursion relation

f(o) = pr (6.6.2)

f(x+l) = f(x) • (N-p) (x+r)/(x+l).

Having computed the point probabilities, NBSETU then stores the four sets

of discre.te valueS using the procedure described in Chapter 2. NBSETU is

called as follows:

CALL NBSITU(P,IR), (6.6.3)

where "B1" ,IrsL be in the integer mode and 0 < "I" < 1. NBSETU need be

I
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called only once for a given "P" and "IR", but must be called at least

once prior to the initial call to flANEBI.

RANEBI addresses the very fast scheme for thc generation of the

required variates, and is called as follows:

where "10IOD, the primer, must be an odd positive integer, and X is returned

'in single precision real. mode.

GEN6 requires 944 words of storage space and an average time per

generation in the 35-40 usec range. The floiw-chart of cGEN6 foltlows that

of figure 2.1 except for the section of GEN6 that calculates the point

probabilities.

6.7 GEN7

GEN7 provides a fast procedure for generating discrete random vari-

ables with any specified probability distribution demoted by a vector

P={p 1,p2 P ... 1. It is written as a subroutine with two entry points,

I3SETUP and RANDIS. DSET]UP is called with 3 parameters, "P. IX. N;

where 11"'I is a vector of probabilities (real mode), "IV" is a vector of

corresponding discrete values (integer miode), and "IN" is the number of

elements in vectors, e.g.

CALL DSETUP(P,IX,N'). (6.7.1)

The discrete values of the "IX" vector are stored in four sets based on

the high order 4 digits of thc elemncivs of the "I'" vector. This procedure

is given in Chapter 2 and illustrated in figure 2.1. D)SETUP nced he called
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only once for a particular set of parameters, however, it must be called

at least once prior to the initial call to RANflIS.

RAINDIS addresses the very fast scheme that performs the actual genera-

Zion of the required variates. It is called as follows:

X = RANDIS(I0D), (6.7.2)

where "100'" must be an odd positive integer and "X", the generated variatea

is returned in single precision real mode.

In its present form GEN7 requires that the elements of the "IX" vector

be in the integer mode and that no value exceed 255. Also, the parameter

"IN", the number of elements in the vectors, may not exceed 256. If the

user wishes his discrete variables, members of the "IIX"I vector, to be in

the real mode or to be in the integer mode but with values greater than

255, hie need Only make the changes indicated by table 6.1. If he desires

to have his result returned in the integer mode he need only delete the

following

STMT

149 ST O,RES

I50 MVI RES, X146'

151 AE PIRES,

and change the designation RANDIS to IANDIS in his calling statement and

in the following

SWTM

120 ENTRY RANDIS

121 USING RtANDIS, 15

123 DC CL7.' HAN DIS'

124 RAN 1)I1S STN! 1,3,24(13).
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Storage requirement may also be A!ltered simply by changing

STMT

97, C 7, -- F'20001

168 A DS 2000XLI

In its present form GEN7 requires 904 words of memory space and

35-40 usec per generation.
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Assemblcr Listing of GENO
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APPENDIX 13

Assembler Listing oif GEN!

m•I
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